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Abstract

The X-ray optical properties of mirrors and Bragg
re¯ecting perfect crystals are almost perfectly matched
to the characteristics of synchrotron-radiation sources.
That the X-ray refractive index is close to but less than
one was realised early in the history of X-ray scattering ±
consequences are that mirrors exhibit total external
re¯ection over a small angle range, ca 0.01 rad, and
perfect crystals totally re¯ect X-rays in a small angle
range, � a few seconds of arc near the Bragg angle. The
theory and application of these unique properties was
developed in considerable detail in the three decades
before the advent of the synchrotron-radiation era. This
historical development is traced with special emphasis
on the way in which the optical concepts were then
straightforwardly applied to synchrotron-radiation
X-ray optical design. In more recent times, the tech-
nology of synthetic multilayers has been developed so
that these too are widely used in X-ray optics for
synchrotron-radiation beamlines. As X-ray synchrotron-

radiation sources were born, perfect-crystal X-ray optics
and crystal-growth technology matured; this symbiosis
was not planned, it could not have been planned . . . but
it works, spectacularly!

1. Historical introduction

In the ®rst volume of Acta Crystallographica, a paper by
Ramachandran (1948) resolved a 30 year debate about
the theories of Darwin (1914a,b), Ewald (1917) and
Prins (Prins, 1930; Kohler, 1933); they had predicted
three different results for the Bragg re¯ection curve
from a perfect crystal. Ramachandran concluded that
`the Ewald and Darwin theories, although they follow
very different mathematical methods, lead exactly to the
same results when appropriate physical assumptions are
made' and that `the dynamical theory also gives Prins's
formula for an absorbing crystal'. Until the late 1950s
when ideally perfect crystals became almost routinely
available, experiment and theory of X-ray diffraction
made only spasmodic progress.

W. C. RoÈ ntgen, in his third Communication, dated
March 1897, stated `Ever since I began working with
X-rays, I have repeatedly sought to obtain diffraction
with these rays: . . . . The experiments on the permia-
bility (for X-rays) of plates of constant thickness cut
from the same crystal in different orientations, which
were mentioned in my ®rst Communication, were
continued. Plates were cut from calcite, quartz, tour-
maline, beryl, aragonite and barytes. Again no in¯uence
of the orientation on the transparency could be found.'
Following the discovery of X-ray diffraction by crystals
in 1912, it became clear that the effect had been
predicted in Ewald's 1912 thesis (Ewald, 1950). Within
3 years, it was also known that neither Ewald's nor
Darwin's (1914a,b) theories of diffraction by perfect
crystals actually predicted the observed intensities.
Bragg (1914, 1915) noted that some diamond and some
calcite crystals diffracted intensities proportional to the
structure amplitude but that all others so far studied
behaved as `mosaic crystals', a term invented by Darwin
early on to account for the higher-than-expected inten-
sities that were usually observed. In most crystals, the
diffracted intensity agreed with Darwin's formulae for
the mosaic crystal wherein the difracted intensity is
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proportional to the square of the structure amplitude.
And so the situation remained for a very long time. Most
crystals seemed to follow the ideally mosaic paradigm,
but low intensity due to extinction was frequently
observed (and largely ignored!), and a few crystals
approached agreement with the Ewald/Darwin intensity
predictions.

Of these, calcite became of utmost importance as a
unique monochromator in spectroscopic experiments.
By 1922, Davis & Stemple (1921, 1922) had obtained
high-resolution calcite crystals that gave an instrument
pro®le under Bragg re¯ection only 1800 wide in the newly
invented double-crystal spectrometer. Within a few
years, this had been reduced to about 600 in agreement
with the perfect-crystal theories. Ehrenberg & Mark in
1927 found diamonds with 111 re¯ection curves only 400

wide. Thus, the Darwin±Prins curve and its width had
been veri®ed in two crystal species. The ®rst high-quality
synthetic single crystals were of rock salt, NaCl, grown
from the melt. They were investigated by Renninger in
1934. Crystals a few square mm in area gave double-
crystal widths as small as 7.100 in the 200 Bragg re¯ection,
much lower than any previously observed for rock salt,
and both the integrated re¯ectivity and the diffraction
width were close to the values predicted by perfect-
crystal diffraction theory. The state of development and
con®dence in the perfect-crystal dynamical diffraction
theory is well described in detailed measurements and
calculations for rock salt by Renninger (1934) and for
calcite by Compton (1934).

The structure and properties of wave®elds inside
periodic media, such as crystals, during Bragg re¯ection
are ®nely detailed and subtle. In appropriate circum-
stances, large and surprising intensity changes may be
observed. Borrmann (1941, 1950) ®rst observed that
thick quartz crystals became anomalously transparent
when oriented near the Bragg position. The effect can be
very large; an intensity change from detector back-
ground to many thousands of counts per second with
laboratory X-ray tubes (Cu K�) and modern crystals of
germanium or silicon. The observation was quickly
veri®ed by Campbell (1951), Schwarz & Rogosa (1954)
and Brogren & Adell (1954), and shown to be quite
consistent with and quantitatively predicted by the then
established dynamical diffraction theory (von Laue,
1949; Hirsch, 1952; Zachariasen, 1945). Knowles (1956),
at the suggestion of Ewald, sought to detect the anom-
alous transparency effect in monochromatic neutron
diffraction from 3CdSO4�8H2O but failed to ®nd a
convincing effect because the available crystals were not
suf®ciently perfect. He also studied calcite and searched
for the 40Ca(n
)41Ca neutron capture 
 ray at 1.93 MeV
as the crystal was rocked through the 211 Bragg re¯ec-
tion for 1.30 AÊ neutrons obtained from a calcite mono-
chromator in the parallel setting. Theory and
experiment were in perfect agreement and for the ®rst
time the microscopic standing wave®eld was `seen'

experimentally (see Knowles, 1956, Fig. 7). The
equivalent X-ray experiment was demonstrated by
Batterman (1962) who monitored the germanium
¯uorescence signal as a germanium crystal was rocked
through the Bragg position with Mo K� radiation.

2. Theoretical background and laboratory experiments
before the synchrotron-radiation era

The ®rst observation of terrestrial synchrotron radiation
and the invention of the transistor occurred within a
year or so of the foundation of Acta Crystallographica.
Although X-ray synchrotron-radiation sources were not
used for experiments until much later, almost perfect
germanium crystals became available and led to a wide
range of diffraction experiments aimed at both the
fundamentals of dynamical diffraction and to delineate
and understand the crystal defects, their formation and
propagation. By 1960, almost perfect silicon crystals also
became available. Most recently, in the 1990s, a few large
synthetic diamonds have been produced and used as
optical elements in high-power synchrotron-radiation
beamlines.

The principal phenomenon that distinguishes dy-
namical diffraction from kinematical diffraction is the
effect of extinction. This results from the depletion or
re-direction of the bulk of the incident X-ray intensity
during Bragg re¯ection because of the diffraction effect
itself. Consequently, the scattering events in different
parts of the illuminated crystal are correlated. Under
kinematical diffraction, the diffraction process is rela-
tively weak such that scattering events in different parts
of the exposed crystal are uncorrelated. This is usually
the case when the scattering power of the Bragg
re¯ection is intrinsically weak or when the crystal is
mosaic or imperfect. Here, the dominant factors
responsible for depletion of the incident X-ray intensity
are the size of the crystal and X-ray absorption.

Among the predictions of dynamical diffraction
theory is the presence, within the crystal, of X-ray
standing wave®elds during Bragg re¯ection, whose
nodes and antinodes are in or out of registry with the
Bragg planes. These are simply Bloch-type eigensolu-
tions of Maxwell's equations governing the propagation
of electromagnetic radiation inside a medium of peri-
odic dielectric constant. Their existence was predicted
by von Laue in 1935, who later invoked them (von Laue,
1949) to explain anomalous X-ray transmission accom-
panying Bragg diffraction in a perfect crystal (Borr-
mann, 1941, 1950). Con®ning our attention to the Bragg
diffraction geometry, in which the diffracted X-ray beam
exits the crystal via the same surface upon which the
primary beam is incident, it can be shown that there
exists a continuous transition from the excitation of one
kind of standing wave ®eld (with nodes degenerate with
the Bragg planes) to the other kind (with nodes centered
between the Bragg planes) as the incidence angle (or
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X-ray wavelength) is scanned through the re¯ection.
Within the range of Bragg re¯ection, referred to as the
Darwin (1914a,b) width, there is essentially unit re¯ec-
tivity. The ratio of diffracted to incident electric ®eld
amplitudes is

EH=E0 � ÿjbj1=2�jPj=P��FH=F �H�1=2��� ��2 ÿ 1�1=2�:
�1�

The `reduced-angle' parameter � is a coordinate
consisting of the sum of a term proportional to the
incidence-angle deviation from the nominal Bragg angle
and a term proportional to the shift in Bragg angle
arising from the refractive index inside the crystal. The
factor b relates to the asymmetry of the Bragg re¯ection,
i.e. the angle between the Bragg and surface planes
projected into the plane of X-ray scattering, and is ÿ1
for a symmetric re¯ection. The range of Bragg re¯ection
occurs in the region where the magnitude of � is less or
equal to 1. P is the polarization factor, 1 for sigma (�)
and cos 2�B for pi (�) polarization. FH is the structure
factor for the H Bragg re¯ection and consists of the
Fourier summation of the atomic scattering form factors
within the unit cell (including the anomalous-dispersion
corrections) weighted by the Debye±Waller contribu-
tions of individual scatterers. The diffracted-to-incident-
beam intensity ratio is simply the square of the modulus
of the electric ®eld amplitude ratio, and the Darwin
angular width of total re¯ection for a symmetric re¯ec-
tion is

��D � 2re�
2jPjjFHF �Hj1=2=�V sin 2�B: �2�

Here, re is the classical electron radius (2.82 � 10ÿ15 m),
� is the X-ray wavelength, V is the unit-cell volume and
�B is the nominal Bragg angle. It is important to note
that all of the X-ray physics describing Bragg re¯ection
in perfect crystals is contained in equation (1). This,
together with the boundary conditions on the electro-
magnetic ®eld and Snell's law determines completely the
excitation of wave®elds within the crystal. The polar-
ization factor P takes one of two values for linearly
polarized incident radiation and the reduced angle
parameter term has two values corresponding to the �
and ÿ signs in the term in brackets. Thus, for a linearly
polarized (or unpolarized) incident wave, there are four
waves in the crystal ± in terms of classical optics all
crystals are doubly birefringent and doubly dichroic
near the Bragg angle. Note that FH is complex both by
virtue of optical dispersion and because of the phase
shifts between different atoms in the unit cell. We

anticipate that all of the known effects in classical optics
will be observed in Bragg re¯ecting crystals but with
twice the number of parameters per Bragg re¯ection!

In classical optics where the length scale of materials
structures is small compared to the wavelength of light,
materials are only isotropic, uniaxial or biaxial. The
optical indicatrix is an ellipsoid. In the X-ray case, the
indicatrix is a sphere but the sphere is split into a four-
branched (or multiply branched) surface whenever
Bragg re¯ection occurs. The overall effect is that for
each energy the Kossel diagram (see James, 1948) is a
representation of the refractive index as a function of
orientation.

The most important performance parameter for
perfect-crystal X-ray monochromators is the re¯ectivity
shown in Fig. (1a). It is very close to unity within the
Darwin width. Since the photon beam emerging from a
synchrotron source is linearly polarized in the synchro-
tron orbit plane, it is clear that the preferable scattering
geometry for a monochromator is �, i.e. perpendicular
to the orbit plane (and thereby generally vertical at
storage-ring sources). This orientation maximizes the
delivered monochromatic photons for all possible X-ray
wavelengths and simultaneously serves to enhance the
beam polarization. The delivered photon ¯ux is
proportional to the Darwin width, which, for synchro-
tron optics applications, is more conveniently expressed
in terms of the relative energy bandwidth for the H
Bragg re¯ection:

�E=E � cot �B��D: �3�
Through algebraic manipulation, this can be expressed
as

�E=E � 4red2jPjjFHF �Hj1=2=�V; �4�
where d is the d spacing of the Bragg planes. Table 1
gives relative diffracted bandwidths (for the �-polar-
ization geometry) for low-index Bragg re¯ections for
diamond, silicon and germanium. Improved energy
resolutions are attained for smaller d spacings as well as
for smaller structure factors at the expense of diffracted
¯ux. In practice, the intrinsic resolution of the crystal
may be increased by the angular divergence of the
incident X-ray beam.

The presence of the |P| polarization term in equation
(4) indicates that the energy bandwidth depends on the
polarization state; we have listed in Table 1 the widths
for the � state which corresponds to dispersion in the
vertical plane at bending-magnet beamlines. The
narrower bandwidths of the higher-order Bragg re¯ec-
tions are truly realised at third-generation sources,
because those sources have very low divergence in the
vertical plane of diffraction.

All the waves excited inside the crystal are phase
coherent, as they are in the optical case. Their relative
phases are therefore important parameters which are
shown in Fig. 1(b). Notice that the phase of the

Table 1. Representative diffracted bandwidths �E=E

hkl Diamond Silicon Germanium

111 5.8 � 10ÿ5 1.3 � 10ÿ4 3.2 � 10ÿ4

220 2.0 � 10ÿ5 5.6 � 10ÿ5 1.5 � 10ÿ4

311 9.0 � 10ÿ6 2.7 � 10ÿ5 6.9 � 10ÿ5

400 8.0 � 10ÿ6 2.3 � 10ÿ5 6.1 � 10ÿ5
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diffracted wave with respect to the incident wave is �=2
for both polarization states at the center of the Bragg
range, and that they both asymptotically tend to � on the
low-angle side of the Bragg re¯ection range and to 0 on
the high-angle side. Inside the crystal, the phase differ-
ence between the differently polarized waves is impor-
tant and is also plotted in Fig. 1(b) (as a chain-dashed
line). Two features of this are important: within the
Bragg range the phase difference varies almost linearly
as the angle is changed [from a minimum of about ÿ�=4
for the case presented in Fig. 1(b) to a maximum of
about ��=4] and outside the Bragg range the phase
difference tends asymptotically to 0 at large angles. This
is of importance for the performance of crystal-based

circular X-ray polarizers, as discussed in the next
section.

Because the X-ray re¯ectivity approaches unity in the
range of Bragg re¯ection, the penetration depth is
limited by both extinction and absorption. In practice,
extinction dominates as shown in Figs. 1(c), (d). The
maximum extinction coef®cient for the silicon 220
re¯ection is 365 mmÿ1 whereas the absorption coef®-
cient is only 15 mmÿ1. In optical terms, the difference in
peak attenuation between the two linear polarization
states is a manifestation of linear dichroism. The
extinction effect is more dramatic in Fig. 1(d), which
shows a penetration depth of only 1.1 mm inside the
range of total re¯ection and anomalous transparency on

Fig. 1. Properties of X-ray wave®elds calculated from equation (1) are plotted as a function of angle, proportional to �, for a symmetric Si(220)
Bragg re¯ection at 8 keV photon energy, and for the � (solid curves) and � (dashed curves) polarization geometries. (a) The X-ray re¯ectivity.
(b) The phase difference of diffracted to incident electric ®eld amplitudes. The difference of phase shifts between the two beam polarizations is
shown as a chain-dashed line. (c) The attenuation coef®cient of the X-ray beam inside the crystal. (d) The effective penetration depth of the
beam below the surface. (e) The normalized electric ®eld intensity on the Bragg planes and near the surface. ( f ) The normalized intensity
midway between the planes. Away from the Bragg re¯ection, the attenuation coef®cient and penetration depth are determined by photoelectric
absorption and the electric ®eld intensities are normalized to unity.
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the low-angle side of the Bragg range. This last effect is
the Bragg (re¯ection) case manifestation of the (trans-
mission) Borrmann effect.

Pairs of waves inside the crystal create standing
wave®elds with spacings equal to d, the Bragg crystal
spacing, and PendelloÈsung wave®elds with spacings
proportional to ��ÿ1

D [equation (2)]. The ®rst pairing is
responsible for manifestations of anomalous absorption
such as the Borrmann effect. Their ®eld intensities on
the Bragg planes are shown in Fig. 1(e) and between the
Bragg planes in Fig. 1( f ). The second pair of waves
represents birefringence which is crucial in polarizing
X-ray optics.

Finally, Fig. 2 shows the relationship between the
members of the harmonic series of 220, 440 and 660
Bragg re¯ections which are simultaneously present
when a white beam of X-rays is diffracted by a perfect
crystal. Clearly, such a beam is not ideally suited for
either diffraction or spectroscopic experiments and
designs for synchrotron-radiation beamlines must
address that problem.

3. Applications of dynamical diffraction principles in
synchrotron X-ray optics

3.1. Perfect crystals

Multiple-crystal or multiple re¯ection channel-cut
crystal monochromators are employed to exploit these
effects, for attaining high resolution, polarization
control, divergence control and for harmonic rejection.
Since the simultaneous higher-order Bragg re¯ections
have narrower Darwin widths (see Fig. 2), offset
multiple re¯ections can be used effectively for harmonic
rejection (Hart & Rodrigues, 1978; Bonse et al., 1983).
Parallel alignment of successive crystal Bragg re¯ections
can suppress the tails of the re¯ectivity curve while
largely preserving the central region of peak re¯ectivity
(Bonse & Hart, 1965). By slightly offsetting successive

Bragg re¯ections from parallel alignment, the central
region of peak re¯ectivity can be narrowed in angle (and
in energy) considerably (Hart et al., 1984; Berman et al.,
1985). The offset Bragg re¯ection scheme also provides
tuneable linear X-ray polarizers (Hart & Rodrigues,
1979).

Linear X-ray polarizers were originally based on 90�

Bragg scattering for which cos 2� is zero (Chandra-
sekaran, 1959; Cole et al., 1961; Skalicky & Malgrange,
1972; Hart, 1978). Tuneable linear polarizers based on
the Borrmann effect were used by Cole et al. (1961).
Tuneable linear polarizers with exceptional extinction
were ®rst used by Hart & Rodrigues (1979) in the Bragg
case of re¯ection.

A wide variety of circular X-ray polarizers, quarter-
and half-wave plates, has been developed. It suf®ces
here to list the aspects of dynamical theory that are
exploited. In the Laue case (transmission), the Pendel-
loÈ sung interference effect has been exploited (Skalicky
& Malgrange, 1972; Hart, 1978). Bragg-case transmis-
sion, in the tails of the re¯ection peak using the forward-
diffracted beam, provides circularly polarized X-rays
(Belyakov & Dmitrienko, 1991; Hirano et al., 1991).
Bragg±Bragg (Batterman, 1992) and Bragg±Laue (Mills,
1987) double re¯ections have also been used to create
circularly polarized X-ray beams. A switching left±right
circular polarizer has been demonstrated by Hirano et
al. (1992).

Experimental applications requiring very high energy
resolution, such as inelastic X-ray scattering and studies
of MoÈ ssbauer systems, have taken advantage of high-
index Bragg planes (i.e. small d spacing) and especially
back-re¯ection conditions (for which the Darwin width
broadens considerably in angle but minimizes in energy)
for crystal monochromators and analyzers alike (Kohra
& Matsushita, 1972; BruÈ mmer et al., 1979; Caticha &
Caticha-Ellis, 1982; Graeff & Materlik, 1982). Dispersive
multiple-re¯ection monochromators for MoÈ ssbauer
applications (Siddons et al., 1989; Ishikawa et al., 1992)
and large-collection-angle back-re¯ection crystal ana-
lyzers for inelastic scattering applications (Dorner et al.,
1986; Stojanoff et al., 1992), are based on these princi-
ples.

There are many reviews of hard X-ray optics applied
to synchrotron-radiation beamlines: Matsushita &
Hashizume's (1983) review is particularly comprehen-
sive.

3.2. X-ray multilayers

Fine monochromatic beam resolution is often un-
necessary for many experimental applications of
synchrotron radiation, and in such cases entails inef®-
cient utilization of the continuous radiation spectrum.
Broader bandwidth diffractive optics such as layered
synthetic microstructures or multilayers, consisting of a
periodic ®lm of alternating heavy and light layers grown

Fig. 2. Re¯ectivity for the 220, 440, 660 harmonic series in silicon at 8,
16 and 24 keV.
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atop a substrate, can be designed to diffract photon-
energy bandwidths that are 100 times broader than
routinely diffracted by conventional crystal mono-
chromators, resulting in a `monochromatic' beam that
is thereby that much more intense. Dynamical theory
well explains the diffraction properties of multilayers
(Underwood & Barbee, 1981). Multilayer combinations
of W=Si, W=B4C, Mo=Si, Mo=B4C and others are
available commercially. They are generally fabricated
with bilayer spacings of 20±30 AÊ , with a total of >100
bilayers grown on silicon or glass substrates. These d
spacings are about ten times bigger than for commonly
used Bragg planes of Si or Ge monochromator crystals;
it is therefore evident, from equation (4), that the
sensitivity of the relative diffracted bandwidth to the d
spacing is a major factor in explaining the broad band-
width properties of multilayers. FH=V is essentially the
effective electron scattering density, which is similar for
crystals and multilayers composed of the same elements.
Multilayer monochromators are in common use at
synchrotron sources; the current state-of-the-art is
described by Ziegler (1995).

3.3. X-ray mirrors

RoÈ ntgen and many others spent much time trying to
observe X-ray refraction, an effect predicted with
con®dence, especially after the discovery of X-ray
diffraction. During the 1930s, de®nitive measurements
of the critical angle below which total external re¯ection
occurred, according to Snell's law for the case when the
refractive index is less than one, were ®nally made (see,
for example, Compton, 1934; James, 1948).

The complex refractive index in the X-ray energy
range can be written in terms of the X-ray scattering
amplitudes as

n � 1ÿ �ÿ i�: �5�
The critical angle of grazing incidence �c below which
total external re¯ection occurs is given by

cos2 �c � 2� �6�
or

�c � 0:00234���Z=M�1=2: �7�
Some values are given in Tables 2 and 3 for several
materials that are commonly used for X-ray mirrors.

Since the maximum aperture of the mirror cannot
exceed �c, there is a strong incentive to make mirrors
with heavy elements so as to maximize the critical angle.
Unfortunately, most of the materials that can be worked

to the necessary ®gure are composed of light elements
or have a low density ± for example, copper, silicon,
silicon carbide, silica and various glasses. The solution is
to coat the mirror with a heavy element since the skin
depth for the evanescent mode which enables total
external re¯ection is only 100 AÊ or so at most energies
of interest. Fig. 3(b) shows that a silicon mirror coated
with just 500 AÊ of platinum would act as though it was a
solid platinum mirror from the X-ray optical viewpoint.
The thermomechanical properties of silicon combine
with the X-ray optical constants of platinum to form an
optimized mirror.

In practice, the surface roughness is a crucially
important factor in mirror fabrication; only very recently
have almost perfect X-ray mirrors become available.
Over the last few years, approximately half of all X-ray
mirrors have been manufactured from single-crystal
silicon with thin metallic coatings.

4. Applications to synchrotron-radiation beamlines

Beamline X-ray optical systems fall generally into two
classes: generic general-purpose beamlines that conform
to a common design; and special-purpose beamlines
designed for particular tasks. Since perfect crystals and

Table 2. Critical angles at 50% re¯ectivity for several mirror materials at 10 keV

Silicon Silica Copper Gold Platinum

�c (�) 0.1817 0.1812 0.3149 0.4407 0.4623
�c (rad) 3.17 � 10ÿ3 3.16 � 10ÿ3 5.50 � 10ÿ3 7.69 � 10ÿ3 8.07 � 10ÿ3

Fig. 3. Re¯ectivity of a silicon and platinum mirror at 10 keV X-ray
energy and the corresponding beam penetration depth.
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almost perfect mirrors have become available, the
concepts and results of many years of experience of
dynamical diffraction can be routinely invoked in
beamline design. Most of the synchrotron-radiation
facilities in the world publish their portfolio of beam-
lines, designs and functions (see, for example, http://
www.nsls.bnl.gov/BeamLine/BeamLMenu.html and
http://www.nsls.bnl.gov/Intro/AllSynch.html). For illus-
trative purposes, Fig. 4 shows a simple generic beamline
that directs a tuneable, monochromatic, focused X-ray
beam onto a sample.

In this simple example, the `point' source is imaged
onto the sample by a toroidal mirror. The doubly
re¯ecting monochromator crystal, which may be a
monolithic channel-cut crystal or two separate crystals,
provides an undeviated tuneable monchromatic beam.
In principle, subtle differences in performance arise if
the crystal and mirror are interchanged. The horizontal
aperture of the mirror is limited to twice the critical
angle. Larger apertures can be achieved by using a
sagittally focusing crystal monochromator instead
(Sparks et al., 1980). Harmonic rejection is achievable
either by off-setting the parallelism of the two crystals or
by using the energy dependence of the mirror critical
angle. Of course, the beam could be used for spectros-
copy, diffraction or small-angle scattering.

In practice, there are many variables that can dictate
beamline design. For example, the sample may be in the
form of a capillary or a sheet of material. Plane-wave
beams may be necessary for high-angle or energy-reso-
lution measurements. Polarization modulation or
control may dominate the design requirements. In
addition to the www references above, the tri-annual
Synchrotron Radiation Instrumentation meetings
(SRI'91, 1992; SRI'94, 1995; SRI'97, 1998) contain wide-
ranging design information.

5. High-power X-ray optics

In modern storage rings, the thermal power in the
photon beam can be a cause of temperature changes and
inhomogeneity in the monochromator itself. Mirrors too
may suffer suf®ciently large heat loads to compromise
their optical performance. Sample calculations show
that the total photon power produced by wigglers can be
in the kW range while undulators and focused white-
radiation beams from bending magnets and wigglers can
result in power densities in the 100 W mmÿ2 range.
Bearing in mind that the surface ®gure of mirrors is
critical to their performance and that the preservation
of perfection and homogeneity in crystals is crucial to

delivering the Darwin ef®ciency, it is clear that the
thermal response of these optical components is very
important in practice.

Two simple thermal calculations suf®ce to illustrate
the problems that arise in high-power X-ray beams. The
important parameters that de®ne the dynamic thermal
response to changing beam current are beyond the
scope of this summary.

5.1. One-dimensional heat ¯ow

The steady-state thermal diffusion equation can be
solved exactly in this case. With a power input Q=A per
unit area, we require that

Q=A � krT � k�TH ÿ TC�=t; �8�

where TH, TC are the hot and cold temperatures and t is
the crystal or mirror thickness. In either case, a parallel
plate becomes spherically bent to a radius R which is
given by R � t=��TH ÿ TC� . The resulting curvature is
independent of the thickness of the material since we
can combine these last two results to give Q=A � k=�R.
In the dynamical diffraction regime, sensitivity to
curvature is extremely high, for example 1 km bend
radii are easily detected. With R � 1 km in silicon (for
which k � 160 W mKÿ1 and � � 2:33� 10ÿ6), we ®nd
Q=A � 68 mW mmÿ2; very low power density indeed
compared to that routinely available at modern
synchrotron-radiation sources, typically 100 W mmÿ2 on
undulator beamlines.

5.2. Three-dimensional heat ¯ow with cylindrical
symmetry

The beam that emerges from the storage-ring dipole
magnets and from most wigglers is a horizontal swath of
radiation. From the thermal viewpoint, the footprint of
these beams is therefore a line source of heat on a wafer
or more particularly a semi-in®nite conducting medium.
In this case too, the thermal diffusion equation has

Fig. 4. Typical tuneable monochromatic focused beamline.

Table 3. Critical angle for silicon at various X-ray energies

10 keV 15 keV 20 keV 25 keV 30 keV

�c (�) 0.1817 0.1211 0.0909 0.0727 0.0606
�c (rad) 3.17 � 10ÿ3 2.11 � 10ÿ3 1.59 � 10ÿ3 1.27 � 10ÿ3 1.06 � 10ÿ3
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simple analytical solutions. The steady-state solution in
cylindrical polar coordinates is

Q=L � 2�k�TH ÿ TC�= ln�R=r�; �9�
where Q=L is the heat input per unit length. The
important part of the solution is the ln R dependence of
the heat loading on the distance to the distant cylindrical
boundary at which the cooling heat sink is provided. For
the case R� r, this result is exactly the same as the one-
dimensional result, as expected. If R � 0:1 m, corre-
sponding to a thick single-crystal block, then the hot
beam footprint reaches the melting point of silicon when
the heat ¯ux exceeds 270 W mmÿ1 of input thermal
power if the cold boundary is at room temperature. Such
linear power densities are frequently encountered at
synchrotron-radiation sources.

6. Choice of materials for monochromators and mirrors

At the highest thermal beam powers encountered, there
are clearly problems at room temperature with silicon
monochromators and with normal mirror materials from
the point of view of X-ray optical performance.

In the case of mirrors, the mechanical properties of
the mirror material can be chosen almost independently
of the optical properties of the mirror surface coating
because the re¯ecting layer needs to be only a few
hundred AÊ thick from the optical point of view. In
crystal diffraction, the perfect-crystal layer too only
needs to be several extinction distances thick, that is
several tens of mm thick, but it must be ideally perfect.
Such perfect epitaxy between dissimilar materials is
simply not possible in practice so that the mono-
chromator must be a single perfect crystal.

To solve the crystal thermal load problem, two solu-
tions have been explored: to use different materials
chosen for their thermal and mechanical properties
(Bilderback, 1986; Freund, 1995) or to adapt the crystal
shape so as to compensate for the thermal deformation
(Berman & Hart, 1991; Quintana et al., 1995; Schulte-
Schrepping et al., 1997). Compensation of the thermal
deformation of surface ®gures has also been applied
adaptively for mirrors (Susini et al., 1991).

Two different materials have emerged that offer
excellent solutions to the high-heat-load mono-
chromator problem: silicon used at about 120 K where
the thermal-expansion coef®cient is zero (Bilderback,
1986) and the thermal conductivity is almost ten times
higher than at room temperature; and diamond used at
room temperature (Freund, 1995). From the point of
view of thermal design, the ®gure of merit for a mirror or
monochromator material is just k=�. Materials with high
thermal conductivity and low thermal expansion are
clearly advantageous in X-ray optics. However, the
power absorbed in thin slices is determined by the X-ray
linear absorption coef®cient �, but the meaning of the
description `thin' is strongly dependent on the X-ray

energy. Silicon wafers are almost totally absorbing at
5 keV but almost totally transparent at 100 keV so that
the incorporation of X-ray parameters such as absorp-
tion or scattering power into X-ray-optical ®gures of
merit is complicated in practice. Some values are given
in Table 4.

The ®gures of merit show the advantages of cryo-
genically cooled silicon and diamond over other possible
materials. The ®gure of merit k=��, which includes the
X-ray absorption coef®cient �, is particularly relevant in
the Laue case of transmission where the absorbed power
increases with � whereas the value of k=� is relevant to
the Bragg case of re¯ection and to mirrors where the
power is essentially totally absorbed. Freund (1995) has
comprehensively reviewed diamond X-ray optics. Marot
(1995) recently reviewed the progress of cryogenic
cooling crystal designs that are now in routine use at
third-generation synchrotron-radiation facilities, hand-
ling without compromise the high heat loads.

7. Future prospects

For crystal X-ray monochromators, three important
materials, diamond, silicon and germanium, are readily
available commercially. For mirrors and multilayers,
important substrates that are readily available
commercially are silicon, glass of several varieties,
aluminium and Glidcop, all offered with a range of
coating and multilayer ®lm combinations. Mechanical
engineering design and modeling can therefore be
undertaken with con®dence in both the X-ray optical
and (thermo)mechanical performance of beamline
components (SRI'97, 1998). Optical performance can be
properly characterized using the DuMond (1937)
diagram approach, via ray-tracing (e.g. the SHADOW
program) (Lai & Cerrina, 1986) and phase-space
methods (Hastings, 1977; Matsushita & Kaminaga,
1980a,b), which are capable of folding in source prop-
erties and optics distortion, and can therefore provide
insight into the best match of beamline optics to a
particular set of source characteristics. The ®nal step, to
incorporate deformed crystal dynamical theory (Takagi,
1962, 1968; Taupin, 1964; Authier & Malgrange, 1998)

Table 4. Figures of merit for mirror and monochromator
materials

Diamond Silicon Germanium

� (10 keV) (mmÿ1) 0.74 7.5 18.5
k at 300 K (W mÿ1 Kÿ1) 3500 160 64
k at 77 K (W mÿ1 Kÿ1) 1330 360
�/C at 300 K 0.8 � 10ÿ6 2.33 � 10ÿ6 5.8 � 10ÿ6

�/C at 77 K ÿ0.5 � 10ÿ6 1.4 � 10ÿ6

k/a (W mÿ1 at 300 K) 4.38 � 109 68.7 � 106 11.0 � 106

k/a (W mÿ1 at 77 K) 2.66 � 109 257 � 106

k/al (W at 300 K) 5.9 � 106 9.16 � 103 0.60 � 103

k/al (W at 77 K) 0.36 � 106 13.9 � 103
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into the design process, is under way. When these
elements are fully integrated into future design strate-
gies, it will be possible to create high performance with a
level of con®dence similar to that already achieved in
visible light optics, even if source power and brightness
continue to increase.

This work was supported in part by DOE contract
Nos. DE-AC02-76CH00016 and DE-AC02-98CH10886.
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